A comparison between CQM and Bag model calculations for the Sivers and Boer-Mulders functions Workshop in TMDs

EINN09, Milos

Aurore Courtoy

Universidad de Valencia

with S. Scopetta (Perugia) and V. Vento (Valencia)

29/09/09

Formalism: The MIT Bag and a Constituent Quark Model

Results

The Sivers Function The Boer-Mulders Function

Bag Model vs. CQM

Conclusions

Prototype Process: Semi-Inclusive Deep Inelastic Scattering

SIDIS:
$$I(l) + N(P) \rightarrow I(l') + h(P_h) + X$$

Factorizatior

$$W^{\mu
u} \propto \sum_{q} e_{q}^{2} \int d^{4}p d^{4}k \, \Phi(k, P, S) \gamma^{\mu} \Delta(p, P_{h}) \gamma^{\nu}$$

- $\Phi(k, P, S) \Rightarrow$ Parton Distribution Functions
- $\Delta(p, P_h) \Rightarrow$ Fragmentation Functions
- Nonperturbative Objects

Some Asymmetries in SIDIS

- \$\phi_S\$ = angle between leptonic plane and transverse spin of the target
- Trento Convention [PRD70, 117504]

Azimuthal Asymmetries for unpolarized target in SIDIS

e.g.,
$$A(\phi_h) \Rightarrow \langle \cos \phi_h \rangle, \langle \cos 2\phi_h \rangle$$

Single-Spin Asymmetries for transverse target polarization in SIDIS

e.g.,
$$A(\phi_h, \phi_S) \Rightarrow \langle \sin(\phi_h - \phi_S) \rangle, \langle \sin(\phi_h + \phi_S) \rangle$$

Transverse Momentum Dependent PDF

Non-perturbative effects of the intrinsic transverse momentum \vec{k}_{\perp} of the quarks inside the nucleon may induce significant hadron azimuthal asymmetries.

[Cahn; Mulders & Tangermans, ...]

Relaxing Time-reversal Invariance ⇒ naiveT-odd functions,

e.g. Sivers & Boer-Mulders functions

[Sivers, PRD41]; Boer & Mulders PRD57.]

Existence of Final State Interactions at leading-order

[Brodsky, Hwang & Schmidt, PLB 530]; [Belitsky, Ji & Yuan NPB 656.]

The gauge link:

0th order, No gauge link \longrightarrow T-odd fct = 0 Existence of leading-twist FSI \longrightarrow T-odd fct \neq 0

CQM & Bag

Models

The Sivers function $f_{1T}^{\perp Q}(x, k_T)$

 \Rightarrow Distribution of unpolarized quarks inside a transversely polarized proton

and

The Boer-Mulders functions $h_1^{\perp Q}(x, k_T)$

 \Rightarrow Distribution of transversely polarized quarks inside a unpolarized proton

- non-perturbative quantities not calculable in QCD
- we use models for the proton not an exact calculation
- goal —> insights into microscopic mechanisms
- HERE: formalisms for
 - MIT bag model
 - Constituent Quark Models (CQM)

e.g. [Jaffe, PRD11]

e.g. [de Rújula, Georgi & Glashow, PRD12]

Formalisms for the *T*-odd functions

Recipe

- go to a helicity basis [Sivers],
- expand the free quark fields
- properly insert complete sets of free states
- identify the intrinsic proton w.f. Ψ_{rS_z}
- we are left with the interaction term $\frac{V(\vec{k}_1, \vec{k}_3, \vec{q})}{\int_{\vec{q}^2} \bar{u}_{m_1}(\vec{k} - \vec{q}) \Gamma u_{m_2}(\vec{k}) \bar{u}_{m_3}(\vec{k}_3) \gamma^+ u_{m_4}(\vec{k}_3 - \vec{q})}$

 \rightarrow to be reduced NR (in a CQM fashion)

・ 同 ト ・ ヨ ト ・ ヨ ト

29/09/09 7/23

Formalisms for the *T*-odd functions

II. MIT Bag Model \longrightarrow 1-body

Recipe

- go to a helicity basis [Sivers],
- expand into the bag quark w.f.
- properly insert complete sets of free states

[F. Yuan, PLB575]

29/09/09 8/23

The interaction

I. Constituent Quark Model

NR reduction of the interaction - up to $O\left(\frac{k^2}{m^2}\right)$ -

Use of free spinors \longrightarrow

 $u_m(\vec{k}) \propto \begin{pmatrix} \chi_m \\ \frac{\vec{\sigma} \cdot \vec{k}}{2} \chi_m \end{pmatrix}$

 $f_1^{\perp \Sigma} P$, $h_1^{\perp Q} \neq 0$ comes from Interference of the lower and upper components in the four-spinors of the free quark states

II. MIT Bag Model

Bag wave function \rightarrow

 $\varphi_m(\vec{k}) \propto \begin{pmatrix} t_0(|\vec{k}|)\chi_m \\ \\ \vec{\sigma} \cdot \hat{k} t_1(|\vec{k}|)\chi \end{pmatrix}$

 $f_{1T}^{\perp Q}, h_1^{\perp Q} \neq 0$ comes from the Interference of the lower and upper components in the **bag w.f.**

The interaction

The interaction is to be calculated between proton states in a CQM \Rightarrow e.g., Harmonic Oscillator $|N\rangle = a|^2 S_{1/2}\rangle_S$ \Rightarrow SU(6) symmetry for the proton

II. MIT Bag Model

Bag wave function \rightarrow

$$\varphi_m(\vec{k}) \propto \begin{pmatrix} t_0(|\vec{k}|)\chi_m \\ \\ \vec{\sigma} \cdot \hat{k} t_1(|\vec{k}|)\chi_m \end{pmatrix}$$

 $f_{1T}^{\perp Q}, h_1^{\perp Q} \neq 0$ comes from the Interference of the lower and upper components in the bag w.f.

The interaction is to be calculated between proton states, we choose \Rightarrow SU(6) symmetry for the proton

A. Courtoy (Valencia)

Properties of the Sivers function

Experiment

- Evidence for non-zero Sivers function at HERMES [2003]
- Sivers Asymmetry statistically compatible with zero within present statistical error at COMPASS [from Transversity 2008]
- Future: CLAS@12GeV?

Extraction from data

- W. Vogelsang and F. Yuan, PRD 72, 054028 (2005)
- M. Anselmino et al., Eur.Phys.J.A39:89-100,2009
- J.C. Collins et al., PRD 73, 014021 (2006)

Theory: Properties of the Sivers function

From first principles: Burkardt Sum Rule (PRD 69 (2004) 091501)

$$\sum_{\mathcal{Q}=u,d} \langle k_x^{\mathcal{Q}} \rangle = \sum_{\mathcal{Q}=u,d} - \int_0^1 dx \int d\vec{k}_T \frac{k_x^2}{M} f_{1T}^{\perp \mathcal{Q}}(x,k_T) = 0$$

Hypothetical relation with the E GPD

- \longrightarrow distribution for *u* is negative, \longrightarrow distribution for *d* is positive.
- Quarks Orbital Angular Momentum (Burkardt,...)

Model Calculations with SU(6) proton WF and perturbative OGE

● NR Constituent Quark Model → 3-body

[A.C., Fratini, Scopetta and Vento, PRD 78 (2008).]

- No proportionality u and d distribution
- Small Violation of the Burkardt SR

$\langle k_x^u \rangle$ +	$\langle k_x^d \rangle$	~ 0.02
$\langle k_x^u \rangle$ –	$\langle k_x^d \rangle$	⊡ 0.02

Both active OR non-active quark helicity-flip

• MIT Bag Model \longrightarrow 1-body

[Yuan, PLB 575 (2003)]

- Proportionality u and d distribution
- Large Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.60$$

Only active quark helicity-flip

Model Calculations with SU(6) proton WF and perturbative OGE

[A.C., Fratini, Scopetta and Vento, PRD 78 (2008).]

- No proportionality u and d distribution
- Small Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.02$$

- Both active OR non-active quark helicity-flip
- MIT Bag Model \longrightarrow 1-body

[Yuan, PLB 575 (2003)]

- Proportionality u and d distribution
 - Large Violation of the Burkardt SR

$$\frac{\langle k_x^u \rangle + \langle k_x^d \rangle}{\langle k_x^u \rangle - \langle k_x^d \rangle} \simeq 0.60$$

• Only active quark helicity-flip

Why such a difference between those 2 models?

Constituent Quark Model vs. MIT Bag Model

Solution

The "non-active quark" can also flip helicity in the MIT Bag Model!!!

[A. C., Scopetta & Vento, PRD79]

Before: dashed curve

- Missing term in the first calculation in the bag
- Burkardt SR violated by 60%

After: plain red curve

- Helicity-flip of the "non-active quark" taken into account
- Burkardt SR violated by 5%

The results in the MIT Bag Model fulfill the theoretical properties of the Sivers function

No proportionality between the *u* and *d*-distributions

Helicity-flip contributions

A. Courtoy (Valencia)

CQM & Bag

29/09/09 13/23

1/1

Results in a CQM

1st moment

$$f_{1T}^{\perp(1)q}(x) = \int d^2 \vec{k}_T \frac{k_T^2}{2M^2} f_{1T}^{\perp q}(x, k_T) \; .$$

- full: results at the hadronic scale $\mu_{o}^{2} \simeq 0.1 \text{ GeV}^{2}$
- shaded area: 1- σ region of the best fit of the Sivers function extracted from HERMES data, at $Q^2 = 2.5$ GeV²

[Collins et al., PRD 73 (2006) 014021]

Model at
$$\sim 0.1~\text{GeV}^2$$
 vs. Exp. at 2.5 GeV^2

Evolution

- Blue: results after NLO-*standard* evolution to $Q^2 = 2.5 \text{ GeV}^2$
- Correct evolution missing

The results in the CQM are \sim in agreement with this extraction of the Sivers function

Results in a CQM

1st moment

$$f_{1T}^{\perp(1)q}(x) = \int d^2 \vec{k}_T \frac{k_T^2}{2M^2} f_{1T}^{\perp q}(x, k_T) \; .$$

full: results at the hadronic scale $\mu_{\rho}^2 \simeq 0.1 \text{ GeV}^2$

 Shaded Area: Sivers function extracted from HERMES and COMPASS data
 [M. Anselmino et al., Eur. Phys. J. A39:89-100 (2009)]

Model at
$$\sim 0.1~{
m GeV^2}$$
 vs. Exp. at 2.5 ${
m GeV^2}$

Evolution

- Blue: results after NLO-*standard* evolution to $Q^2 = 2.5 \text{ GeV}^2$
- Correct evolution missing

The results in the CQM are \sim in agreement with this extraction of the Sivers function

A. Courtoy (Valencia)

29/09/09 15/23

Revised Results in the MIT Bag Model

Shaded Area: 1- σ region of the best fit of the Sivers function extracted from HERMES data, at $Q^2 = 2.5$ GeV²

[Collins et al., PRD 73 (2006) 014021]

 Dashed Curve: 1st result in the MIT Bag model after NLO-standard evolution

[Yuan, PLB 575 (2003)]

 Plain blue Curve: revised result in the MIT Bag model after NLO-standard evolution

[A. C., Scopetta & Vento, PRD79]

The results in the MIT Bag Model are in agreement with this extraction of the Sivers function

... up to correct Evolution of the Sivers function

Revised Results in the MIT Bag Model

- Shaded Area: Sivers function extracted from HERMES and COMPASS data
 [M. Anselmino et al., Eur. Phys. J. A39:89-100 (2009)]
- Dashed Curve: 1st result in the MIT Bag model after NLO-standard evolution

[Yuan, PLB 575 (2003)]

 Plain blue Curve: revised result in the MIT Bag model after NLO-standard evolution

[A. C., Scopetta & Vento, arXiv:0811.1191 [hep-ph]]

The results in the MIT Bag Model are now in a better agreement with this extraction of the Sivers function

... up to correct Evolution of the Sivers function

29/09/09 17/23

Properties of the Boer-Mulders function

Experiment

- Drell-Yan at FNAL [2007]
- SIDIS at COMPASS and HERMES [2009]
- Future: PAX@FAIR ?
- Difficulty of the analysis

Extraction from data

Drell-Yan [Zhang, Lu, Ma and Schmidt, PRD 77] SIDIS predictions in [Barone, Prokudin and Ma , PRD78]

Theory: Properties of the Boer-Mulders function

Hypothetical relation with the chiral-odd E GPD

 \longrightarrow distribution for *u* is negative,

 \longrightarrow distribution for *d* is negative.

From first principles: Lattice

→ moments of chiral-odd GPDs

Burkardt and Hannafious, PLB658

[QCDSF and UKQCD Colls., PRL 98]

Model Calculations with SU(6) proton WF and perturbative OGE

● NR Constituent Quark Model → 3-body

[A.C., Scopetta and Vento, [0909.1404]]

- No proportionality u and d distribution
- Both no helicity-flip AND active and non-active quark helicity-flip

• MIT Bag Model \longrightarrow 1-body

[Yuan, PLB 575 (2003)]

- Proportionality u and d distribution
- Only no helicity-flip

Model Calculations with SU(6) proton WF and perturbative OGE

[A.C., Scopetta and Vento, [0909.1404]]

- No proportionality u and d distribution
- Both no helicity-flip AND active and non-active quark helicity-flip

• MIT Bag Model \longrightarrow 1-body

[Yuan, PLB 575 (2003)]

- Proportionality u and d distribution
- Only no helicity-flip
- \Rightarrow Same problem as for the Sivers function
- \Rightarrow We have revised the BM in the bag!!

Helicity-flip contributions

$$h_1^{\perp(1)q}(x) = \int d^2 \vec{k}_T \frac{k_T^2}{2M^2} h_1^{\perp q}(x, k_T) \; .$$

- u upper; d lower panels
- red curves: results in a CQM (H.O.)
- blue curves: results in the MIT bag model
- full curves: full results
- dashed curves: results non-flipping helicity

Both Models at the hadronic scale $\mu_{
m o}^2 \sim 0.1~{
m GeV}^2$

Conclusions for the CQM

*T***-odd functions in CQM:**

• Analysis of the Sivers & Boer-Mulders functions in a 3-Body model

[A.C., Fratini, Scopetta, Vento, PRD78]

- Formalism valid for any CQM
 ⇒ Ingredients: wave functions and a reduction of the interaction
- Non-Relativistic

Sivers function in the H.O.

- Correct relative sign for u and d distributions
- Burkardt sum rule recovered
- Reasonable agreement with data

Boer-Mulders function in the H.O.

- Correct relative sign for u and d distributions
- Reasonable agreement with expectations from other evaluations

Comparison

Conclusions for the MIT Bag Model

*T***-odd functions in the Bag:**

• Analysis of the Sivers & Boer-Mulders functions in a 1-Body model

[F. Yuan, PLB575]

Formalism in the bag

 \Rightarrow **Ingredients**: bag wave functions and SU(6) proton state

Relativistic

Sivers function in the bag

[A.C., Scopetta, Vento, PRD79]

- Correct relative sign for u and d distributions
- Burkardt sum rule recovered
- Reasonable agreement with data

Boer-Mulders function in the bag

[A.C., Scopetta, Vento, [0909.1404]]

- Correct relative sign for u and d distributions
- Reasonable agreement with expectations from other evaluations

A. Courtoy (Valencia)

CQM & Bag

29/09/09 22/23

Agreement between models

- More physical picture for helicity-flip at the quark level ⇒ either the active and non-active quark can flip
- ► First Principles arguments ⇒ Burkardt Sum Rule fulfilled [Sivers]
- Much better agreement of the MIT Bag calculation with the actual extractions
- By-Product: confidence on the Non-Relativistic expansion !!
- ... to the experiments
 - 1. Need for Correct evolution of TMDs Stefanis, Cherednikov, Ceccopieri ?
 - 2. Relation between GPDs in Impact Parameter Space and T-odd functions????
 - 3. Improvement of the models after experimental feedback

No boost necessary?

Do not quench your inspiration and your imagination; do not become the slave of your model.

Vincent Van Gogh

Definitions

The Sivers function

Distribution of unpolarized quarks inside a transversely polarized proton

$$\begin{split} f_{1\mathsf{T}}^{\perp\mathcal{Q}}(\mathbf{x},\mathbf{k}_{\mathsf{T}}) &= f_{\mathsf{q}/\mathsf{p}\uparrow}^{\mathcal{Q}}(\mathbf{x},\tilde{\mathbf{k}}_{\mathsf{T}},\mathsf{S}) - f_{\mathsf{q}/\mathsf{p}\downarrow}^{\mathcal{Q}}(\mathbf{x},\tilde{\mathbf{k}}_{\mathsf{T}},\mathsf{S}) \\ &= -\frac{M}{2k_x} \int \frac{d\xi^{-}d^2\vec{\xi}_{\mathsf{T}}}{(2\pi)^3} e^{-i(x\xi^{-}P^+ - \vec{\xi}_{\mathsf{T}}\cdot\vec{k}_{\mathsf{T}})} \\ &\frac{1}{2} \sum_{S_y=-1,1} S_y \langle P, S_y | \bar{\psi}_{\mathcal{Q}}(0,\xi^{-},\vec{\xi}_{\mathsf{T}}) \mathcal{L}_{\vec{\xi}_{\mathsf{T}}}^{\dagger}(\infty,\xi^{-})\gamma^{+} \mathcal{L}_{0}(\infty,0)\psi_{\mathcal{Q}}(0,0,0) | P, S_y \rangle \end{split}$$

The Boer-Mulders function

Distribution of transversely polarized quarks inside a unpolarized proton

$$\begin{split} \mathbf{h}_{1}^{\perp \mathcal{Q}}(\mathbf{x}, \mathbf{k}_{T}) &= \mathbf{f}_{q_{1}^{\perp}/p}^{\mathcal{Q}}(\mathbf{x}, \mathbf{\bar{k}}_{T}, \mathbf{S}) - \mathbf{f}_{q_{\perp}/p}^{\mathcal{Q}}(\mathbf{x}, \mathbf{\bar{k}}_{T}, \mathbf{S}) \\ &= -\frac{M}{2k_{x}} \int \frac{d\xi^{-} d^{2} \vec{\xi}_{T}}{(2\pi)^{3}} e^{-i(x\xi^{-}P^{+} - \vec{\xi}_{T} \cdot \vec{k}_{T})} \\ &= \frac{1}{2} \sum_{S_{z}=-1,1} \langle P, S_{z} | \vec{\psi}_{\mathcal{Q}}(0, \xi^{-}, \vec{\xi}_{T}) \mathcal{L}_{\vec{\xi}_{T}}^{\dagger}(\infty, \xi^{-}) \gamma^{+} \gamma^{2} \gamma_{5} \mathcal{L}_{0}(\infty, 0) \psi_{\mathcal{Q}}(0, 0, 0) | P, S_{z} \rangle \end{split}$$

A. Courtoy (Valencia)

29/09/09 25/23

Calculation Details: MIT bag

$$f_{17}^{\perp Q}(x,k_{\perp}) \propto 2\Re \left\{ \int \frac{d^2 q_{\perp}}{(2\pi)^5} \frac{i}{q^2} \sum_{\{m\},\beta} C_{\{m\}}^{Q,\beta} \varphi_{m_1}^{\dagger}(\vec{k}-\vec{q}_{\perp}) \gamma^0 \gamma^+ \varphi_{m_2}(\vec{k}) \int \frac{d^3 k_3}{(2\pi)^3} \varphi_{m_3}^{\dagger}(\vec{k}_3) \gamma^0 \gamma^+ \varphi_{m_4}(\vec{k}_3-\vec{q}_{\perp}) \right\}$$

$$\int \frac{d^3 k_3}{(2\pi)^3} \varphi^{\dagger}_{m_3}(\vec{k_3}) \gamma^0 \gamma^+ \varphi_{m_4}(\vec{k_3} - \vec{q}_{\perp}) = F(\vec{q}_{\perp}) \,\delta_{m_3 m_4} + H(\vec{q}_{\perp}) \,\delta_{m_3, -m_4}$$

With the MIT Bag WF,

$$\varphi_m(\vec{k}) \propto \begin{pmatrix} t_0(|\vec{k}|)\chi_m \\ \vec{\sigma} \cdot \hat{k} t_1(|\vec{k}|)\chi_m \end{pmatrix} \quad , \qquad t_i(k) = \int_0^1 u^2 du j_i(ukR_0) j_i(u\omega)$$

 $H(\vec{q}_{\perp})$ does not vanish in a basis for the gluon's momentum constrained by the DIS framework, $\Rightarrow z$ -axis is the virtual photon's direction \Rightarrow operator structure: γ^+

29/09/09 26/23

Sivers function in a CQM: Calculation details

In a helicity basis, to the first non-vanishing order by expanding the free quark fields and by properly inserting complete sets of free states

$$\begin{split} \mathbf{f}_{\mathbf{IT}}^{\perp \mathbf{Q}}(\mathbf{x},\mathbf{k}_{\mathbf{T}}) &= \Im\left\{\frac{M}{2k_{x}}\int \frac{d\xi^{-}d^{2}\vec{\xi}_{T}}{(2\pi)^{3}}e^{-i(x\xi^{-}P^{+}-\vec{\xi}_{T}\cdot\vec{k}_{T})}\langle PrS_{z}=1\right|\\ &\int d\tilde{k}_{3}\sum_{m_{3}}b_{m_{3}i}^{Q\dagger}(\vec{k}_{3})e^{ik_{3}^{+}\xi^{-}-i\vec{k}_{3T}\cdot\vec{\xi}_{T}}\bar{u}_{m_{3}}(\vec{k}_{3})\\ &\sum_{l_{n},l_{1}}\int d\tilde{k}_{n}\int d\tilde{k}_{1}|\tilde{k}_{1}l_{1}\rangle|\tilde{k}_{n}l_{n}\rangle\langle \tilde{k}_{n}l_{n}|\langle \tilde{k}_{1}l_{1}|\\ &(ig)\int_{\xi^{-}}^{\infty}A_{a}^{+}(0,\eta^{-},\vec{\xi}_{T})d\eta^{-}T_{ij}^{a}\\ &\sum_{l_{n'},l_{1}'}\int d\tilde{k}_{n}'\int d\tilde{k}_{1}'|\tilde{k}_{1}'l_{1}'\rangle|\tilde{k}_{n}'l_{n}\rangle\langle \tilde{k}_{n}'l_{n}'|\langle \tilde{k}_{1}'l_{1}'|\gamma^{+}\\ &\sum_{m_{3}'}\int d\tilde{k}_{3}'b_{m_{3}'}^{Q}(\vec{k}_{3}')u_{m_{3}'}(\vec{k}_{3}')|PS_{z}=-1\rangle+\mathrm{h.c.}\right\} . \end{split}$$

[A.C., F. Fratini, S. Scopetta and V. Vento, Phys.Rev.D78:034002,2008.]

A. Courtoy (Valencia)

Sivers function in a CQM: Calculation

Identifying the intrinsic proton wave function:

$$\begin{split} \stackrel{\text{L}}{\Pi_{\mathbf{T}}} \mathbf{Q}(\mathbf{x}, \mathbf{k}_{\mathbf{T}}) &= \Im \left\{ ig^2 \frac{M}{2k_x} \int d\vec{k}_1 d\vec{k}_3 \frac{d^4 q}{(2\pi)^3} \delta(q^+) (2\pi) \delta(q_0) \delta(k_3^+ + q^+ - xP^+) \delta(\vec{k}_{3T} + \vec{q}_T - \vec{k}_T) \right. \\ & \left. \sum_{\mathcal{F}_1, \{m_i\} \{c_i\}} \Psi_{r\,S_Z=1}^\dagger \left(\vec{k}_3 \{m_3, i, Q\}; \, \vec{k}_1 \{m_1, c_1, \mathcal{F}_1\}; \, \vec{P} - \vec{k}_3 - \vec{k}_1, l_n \right) \, T_{ij}^a T_{c_1c_1'}^a \frac{1}{q^2} \, V(\vec{k}_1, \vec{k}_3, \vec{q}) \right. \\ & \left. \Psi_{r\,S_Z=-1}\left(\vec{k}_3 + \vec{q}, \{m_3', j, Q\}; \, \vec{k}_1 - \vec{q}, \{m_1', c_1', \mathcal{F}_1\}; \, \vec{P} - \vec{k}_3 - \vec{k}_1, l_n \right) \right\} \end{split}$$

with the interaction given by:

f

$$V(\vec{k}_1, \vec{k}_3, \vec{q}) = \bar{u}_{m_3}(\vec{k}_3)\gamma^+ u_{m'_3}(\vec{k}_3 + \vec{q})\bar{u}_{m_1}(\vec{k}_1)\gamma^+ u_{m'_1}(\vec{k}_1 - \vec{q})$$

Next step: reduction of the interaction (in a CQM fashion)

[de Rújula, Georgi, Glashow PRD 12, 147, (1975)]

Calculation details: CQM

NR reduction of the interaction - up to $O\left(\frac{k^2}{m^2}\right)$ -

Use of free spinors \longrightarrow

$$\begin{split} \mathcal{V}(\vec{k}_{1},\vec{k}_{3},\vec{q}) &= \left\{ -i\frac{(\vec{q}\times\vec{\sigma}_{1})_{z}}{4m^{2}}\left(1+\frac{k_{3}^{2}}{m}+\frac{\vec{q}\cdot\vec{k}_{3}}{4m^{2}}\right)+i\frac{(\vec{q}\times\vec{\sigma}_{3})_{z}}{2m}\left(1+\frac{k_{1}^{2}}{m}-\frac{\vec{q}\cdot\vec{k}_{1}}{4m^{2}}\right) \right. \\ &+ \left. \frac{\vec{\sigma}_{3}\cdot(\vec{k}_{3}\times\vec{q})(\vec{q}\times\vec{\sigma}_{1})_{z}}{8m^{3}}+\frac{(\vec{q}\times\vec{\sigma}_{3})_{z}\vec{\sigma}_{1}\cdot(\vec{k}_{1}\times\vec{q})}{8m^{3}} \right. \\ &+ \left. i\frac{\vec{\sigma}_{3}\cdot(\vec{k}_{3}\times\vec{q})}{4m^{2}}-i\frac{\vec{\sigma}_{1}\cdot(\vec{k}_{1}\times\vec{q})}{4m^{2}}+O\left(\frac{k_{1}^{2}}{m^{2}},\frac{k_{3}^{2}}{m^{2}}\right) \right\} \end{split}$$

- helicity-flip interaction $\rightarrow f_{1T}^{\perp Q}(x, k_T) \neq 0$
- extreme NR limit \rightarrow no "small components" of the four-spinors \rightarrow no helicity-flip

 $f_{1,T}^{\perp,Q}(x,k_T) \neq 0$ comes from the Interference of the "small" and "large" components in the four-spinors of the free quark states

The interaction is to be calculated between proton states $\Psi_{r\,S_Z=\pm 1}$ in a CQM \Rightarrow e.g., Isgur-Karl

Sivers function in Isgur-Karl: Higher waves decomposition

• Nucleon state: (we use the 3 first waves) $|N\rangle = a|^2 S_{1/2}\rangle_S + b|^2 S_{1/2}'\rangle_S + c|^2 S_{1/2}\rangle_M$

Notation: $|^{2S+1}X_J\rangle_t$; t = A, M, S = symmetry type From spectroscopy: a = 0.933, b = -0.275, c = -0.233

"Higher waves"

- Importance of small components in the proton wave function
- relevance of further analysis with other (relativistic) models.

29/09/09 30/23

Spin dependence of the matrix element: Sivers function

In a helicity basis, the matrix element to be evaluated is of the type

$$\begin{split} 3 \left\langle \psi(\vec{k}) \varphi_{c} \frac{1}{\sqrt{2}} \left(\phi_{MA} \chi_{MA}^{\dagger} + \phi_{MS} \chi_{MS}^{\dagger} \right) \left| \frac{1 \pm \tau_{3}(3)}{2} \, \hat{\partial}_{spin}(\vec{k}) | \psi(\vec{k}) \varphi_{c} \frac{1}{\sqrt{2}} \left(\phi_{MA} \chi_{MA}^{\downarrow} + \phi_{MS} \chi_{MS}^{\downarrow} \right) \right\rangle \\ = & 3 \left(-\frac{2}{3} \right) \frac{1}{2} \left\{ \phi_{MA}^{*} \frac{1 \pm \tau_{3}(3)}{2} \phi_{MA} \langle \psi(\vec{k}) \chi_{MA}^{\dagger} | \hat{\partial}_{spin}(\vec{k}) | \psi(\vec{k}) \chi_{MA}^{\downarrow} \right\rangle \\ & + \phi_{MS}^{*} \frac{1 \pm \tau_{3}(3)}{2} \phi_{MS} \langle \psi(\vec{k}) \chi_{MS}^{\dagger} | \hat{\partial}_{spin}(\vec{k}) | \psi(\vec{k}) \chi_{MS}^{\downarrow} \rangle + 0 + 0 \right\} \end{split}$$

$$\mathbf{u} \Rightarrow 3\left(-\frac{2}{3}\right)\frac{1}{2}\left\{1\left\langle\psi(\vec{k})\chi_{MA}^{\dagger}|\hat{O}_{spin}(\vec{k})|\psi(\vec{k})\chi_{MA}^{\downarrow}\right\rangle + \frac{1}{3}\left\langle\psi(\vec{k})\chi_{MS}^{\dagger}|\hat{O}_{spin}(\vec{k})|\psi(\vec{k})\chi_{MS}^{\downarrow}\right\rangle\right\}$$
$$= -\left(f(\vec{k}) + \frac{1}{3}g(\vec{k})\right)$$

$$\mathbf{d} \Rightarrow 3\left(-\frac{2}{3}\right)\frac{1}{2}\left\{0\left\langle\psi(\vec{k})\chi_{MA}^{\dagger}|\hat{O}_{spin}(\vec{k})|\psi(\vec{k})\chi_{MA}^{\downarrow}\right\rangle + \frac{2}{3}\left\langle\psi(\vec{k})\chi_{MS}^{\dagger}|\hat{O}_{spin}(\vec{k})|\psi(\vec{k})\chi_{MS}^{\downarrow}\right\rangle\right\}$$
$$= -\left(\frac{2}{3}g(\vec{k})\right)$$

No proportionality between the u and d-distributions due to the spin and momentum dependence of the operator!

Comparison of the *T*-odd functions

 \Rightarrow Boer-Mulders bigger than Sivers function for both flavors \Rightarrow same trend in both models for both flavors.

29/09/09 32/23